
Our Journey to CloudNative architecture

for Low Latency trading systems

What is CloudNative Architecture?

Over the past decade there has been an overall IT move to the cloud, and best practice guidelines have
emerged (such as the "The 15 Facor App"), to help people build scalable, cloud native applications and
solutions.Within the trading and exchange environment, this adoption has been tempered by the
requirement for very low latency, because highly scalable web technologies are not generally low
latency. For example, Kafka - a well known cloudmessaging technology - is great for operating at scale,
but it has very high latency end to end, making it inappropriate for trading environments.

The following describes our journey to our cloud native solution.



Our Journey to the cloud

We recognised the need to rebuild our architecture, when in 2017 and 2018we used our low latency
HFTmatching engine as the basis for a full Crypto Exchange solution. This required the complete
functionality of a retail facing exchange, including such retail components such as payment gateways,
KYC onboarding and referral programs. Amongst all the hype, we faced potential issues such as live
KYC account opening requests numbering in the thousands per hour, and the need for elastically
scalable front end servers to feed price information out to tens of thousands of users.

As a result,from 2019, and for a period of over 3 years, we redefined and rebuilt our architectural
approach.We could not make a simple jump to adopt the latest approaches, but instead needed a
more nuanced approach.

We clearly had tomaintain ourmarket leading latency, to serve the HFT clients in Japan, but we
needed to combine this with the best of the "CloudNative" technologies to allow us to also serve retail
markets and our scalability, flexibility goals.

This meant that we needed to immerse ourselves in
"CloudNative"technologies, to understand the
trade-offs first. Use research and prototyping to get
intimate withmicroservices, micro-front ends,
containers, orchestration and deploymentmodels,
messaging systems. Then pull back tomake tough
decisions onwhether to use our existing approaches,
or rebuild to adopt the cloud approaches.

It was a huge risk for a company of our size, but we
knew that it was time to take the plunge. Cards up in
the air.

The following details some of the choices we settled
on.

The Challenge andOur Solution

Tomeet the needs of our latency-sensitive clients, we've re-engineered our solutions from the ground
up, cherry picking from cloud native architectures as much as possible to achieve a solution that is
innovative and optimized for the needs of our clients.We are proud of the work we have done, and
would like to share our experiences and the decisions andwork we undertook.



Scalability and Performance

Wemoved our core processing engines from shared
memory engines (similar to the Fidessamodel) to a fully
"Event Source" streamingmodel, where any subscriber
compoent can be instantly replaced by another. This"
streaming" model is one of themost significant and
challenging changes, and this is what gives the "Cloud" its
superior reliability to traditional approaches.

For latency on the latency critical paths, it is critical to get
the queuing, threading, logging andmemorymanagement
well researched and optimized.Meanwhile, for scale,
sharding, fan out and stateless components are necessary
parts of themessaging. For both of these we chose to
build these in-house, as we did not feel the available cloud
solutions wouldmeet our requirements.

Built out several high speed "Micro-service Aggregates" as query handlers in the new event source
based CommandQuery Responsibility Separation (CQRS) model, to support dramatically increased
scale, reduced "single point of failure", and dramatically improved latency for aggregate data requests
such as tick data (typically 5 to 10ms).

Breaking down themonolith

While we already had a distributed servicemodel, we did previously have a single large database -
known as amonolithic database. This had grown to be a bottleneck - both for scaling customers, and
for scaling our development teams. It was simply too large for anyone but the original senior
developers to understand. , and a and shifted to simpler, smaller databases, tuned to the requirements
of each service.

As part of themove tomicro-services, and also driven by two
customers requesting amove to lower cost open source
databases, we broke down our single, largemonolithic database
with thousands of tables (which wasmostly managed by the
support team and Business domain experts) tomuch smaller
databases - one for eachmicroservice - which are defined and
managed by the development team.

This single move had a large positive impact on our development
teams, as it suddenly becamemuch easier to understand the full
scope of each database, and thus empowered to discuss
improvements.



At the same time, with themove to having identical databases being deployed inmultiple customers
(instead of custom databases for each customer), we alsomoved to using "Migration" tools tomanage
database design updates deployed in the same automatedway as code updates.

It was therefore required to differentiate between common services and datamodels which do not
vary between customer deployments, and the highly customized services for integrations that many
customers need. These two initiatives dramatically improved our ability to support more consistency
between customer deployments, while still achieving our coremission of providing custom solutions.

With the “single” databasemodel gone, wewere able toWe finally managed to drop our dependence
on expensive legacy database systems,

An in-memory distributed database, for keepingmetadata updated in real-time in the latency
sensitive services, such as the quote pricing engine, the unifiedmatching engine, our hedging engine,
and risk management engine and to provide external mapping data to all our integration adapters
(such as our FIX connections to Intertrade, Tora, PrimeXM, BlockFill, the JPX and TFX, and
connections toMetatrader). As a young service company, we always assumed that wewould need to
providemapping both inbound and outbound!

A postgresql database for configurationmanagement, transactionmanagement, archive data and
report handling, which is still able to support our “multi-tenant” model.

An influxDB time series database to provide the backing store for our real-timeOHLC bar factory, and
optional Integrations with external cloud data lake services (required for our work with Barclays).

Microservices and SystemArchitecture

We adopted a selectivemicroservicemodel, applying a "Domain Driven Design" approachwith
"bounded contexts" to split out core functionality, while ensuring that low latency stateful
components remain extremely fast.

We adopted Event Sourcing, with a new low latencymessaging tier, micro-service architecture, and
common ServiceMesh and Service Chassis framework for service discovery

We rebuilt our Service Orchestration functionality based on a common ServiceMesh and automate
containerised deployments.

We underwent amajor database and datamodel transition from a largemonolithic database design
(which was limiting the team's ability to innovate), to amicroservice based database design, which can
now operate onmultiple databases, including postgresql.

Interoperability and Standards

The architecture is based on theMSOpen ApplicationModel (OAM), a cloud first design, allowing us
tomanagemultiple environments from a single model. Consistent deployments models to dev, UAT or
production environments - while still supporting the customer approval model required in our
regulated customers.



ServiceMesh and Service Chassis “Framework”

Our servicemesh allows any service in the system to locate, monitor or communicate with any other
service via the servicemesh.Meanwhile, the Service Chassis provides common systemwide
functionality, such as distributed real-time data (Venue, Instrument and Trade Account data),
transactionmessage routing and event sourcing, observability, and process scheduling functionality.

This common application framework dramatically accelerates the development process when creating
new solutions or adding components to a system.

DevelopmentWorkflow and CodeQuality

Wemigrated to Gitlab for source code control, and to empower a significant "Shift-Left" transition in
our testing approach, and guaranteed code review/approval process.

While not strictly an architecture issue, at the same time as building out the new architecture, we
appliedmultiple modern approaches to our development lifecycle. In amove towards fully automated
"Shift Left" testing, we required that all components can be fully tested by the developer, usingmock
everything.We built mockmessage injectors for our Itch, Glimpse and old OMX exchange feeds, for
our FIX connections to counterparties like B2C2, Bloomberg, CQG and Trading Technologies.
Databases, Detadata, Telemetry, Schedule providers. Everything.

We built a brand new, unified Behaviour Driven Design (BDD) test framework called "TFCoverage", a
multi-session environment builder and end-to-end tester, which can operate simultaneously across
multiple FIX sessions,Websockets, REST sessions and UI sessions. This generates our test
environments and runs the end to end tests as part of every build cycle.

We built SAST andDAST code analysis into our Continuous Integration Pipelines, to reveal code
weaknesses before being deployed to test environments.

Structured version controlled dependencymanagement, allowing customer releases to bematched
with the specific dependencies required.

Security and Compliance

SecurityManagement is deeply integrated into our
operations, including a regular RiskManagement process
periodic accredited external penetration tests and
DAST/SAST automated tests built into our build pipeline.

Security and Access Control

With themove to themicroservice architecture, we
completely rebuilt our security implementation to support



distributed components, while retaining our existing time provenmulti-layered account datamodel,
which has proven so flexible to numerous different customer implementations, from exchanges to
retail traders.

A newGraphQL based back end service integrated to the new granular user role based security
model, covering both row level access control and feature provisioning

Our alignment with ISO 9000 and FSA guidelines (with annual audits) ensures that your data is secure
and compliant.

Frontend and User Experience

Wedropped the front end legacy framework that was based on Sencha extJS, andmoved to ReactJS
for all new projects

Built a new common front end chassis including features such as the security and permissioning
model, themulti-language andmulti-timezone capabilities into the new
React.

We rebuilt our front ends based on amicro-front end design, following
our existing configurable and granular feature and access
permissioningmodel - leading towards the FDC3 "Financial desktop"
standard (still a work in progress). The application lancher as part of
this is built with the web standard for re-usable html components,
"Web Components'', and is therefore front end framework agnostic.

At the same time, we integrated an all new front end grid component
system, supporting dramatically higher load and volume.

Observability and SystemMonitoring

Webuild a new systemmonitor system based on a digital twin
approach to observability, using theOpenTelemetry standards,
our servicemeshmodel, and self registration.We then added
both application service controls and integrated docker
controls to the same systemmanagement console.We also
then integrated logstash and Elastic to round off allowing all
support operations to bemanaged from one place.

With the "digital twin" model in place, this could then be used
to power cluster management, and instant failover of stateful
high availability services.



TimeManagement and Scheduling

We rebuilt our existing datemanagement and service scheduling functionality to support multiple
calendars (exchanges operating on different calendars), multiple time zones (FX exchanges operating
in Japan on Chicago timezones), multiple session types - daily sessions (futures markets), intra-day
sessions (equity markets), week-long session(crypto and FXmarkets), and "Time-Travel" to support
both calendar andweekend exchange testing set in the future, and process re-runs and corrections in
the past.

We rebuilt our audit and time-travel handling to operate with the latest temporal database designs,
while spitting out our archive data service as a real-time listener on the event streams, thus removing
the need for a separate archive handling process at the end of every day.

Batch to stream

Wehave always had an extremely flexible batch processing engine, which easily supports end of day
processing and imports and Exports to different external systems. However, this is now being replaced
with a stream processing engine, which will support much higher volume, and support systemwide
account status events, like margin warning and limit kill switch events, for HFT traders.

Connectivity and Business Logic

Wewere finally ready to integrate (and port of over)
significant functionality to the newmodel, includingmultiple
market makers and exchanges FIX gateways, the cross
currencymatching and pricing engine, our Itch and Glimpse
exchange feeds, and our Tora equities connections, as well as
7 crypto exchange connections.

Summary

Ok, so perhaps this is somewhat of a list of features, or
perhaps it is a presentation of howmuch effort goes into
bringing a legacy system up to date. At the end of the day, it has been a huge learning experience which
is worth sharing.

We now have amuchmore engaged team, a product which hasmanymanymore automated tests built
into the release process, and a devops teamwho are able to automatemuch of the environment
management and to automatemuch of themonitoring, and are confident enough to consider moves to
adding AI to the systemmonitoring etc.

Of course, it never stops. This is just one chapter in an ongoing process to keep upwith customer
expectations.


